Network Newton Distributed Optimization Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralized and Distributed Newton Methods for Network Optimization and Extensions

We consider Newton methods for common types of single commodity and multi-commodity network flow problems. Despite the potentially very large dimension of the problem, they can be implemented using the conjugate gradient method and low-dimensional network operations, as shown nearly thirty years ago. We revisit these methods, compare them to more recent proposals, and describe how they can be i...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Distributed Newton Methods for Deep Neural Networks

Deep learning involves a difficult non-convex optimization problem with a large number of weights between any two adjacent layers of a deep structure. To handle large data sets or complicated networks, distributed training is needed, but the calculation of function, gradient, and Hessian is expensive. In particular, the communication and the synchronization cost may become a bottleneck. In this...

متن کامل

Distributed Newton Methods for Regularized Logistic Regression

Regularized logistic regression is a very useful classification method, but for large-scale data, its distributed training has not been investigated much. In this work, we propose a distributed Newton method for training logistic regression. Many interesting techniques are discussed for reducing the communication cost and speeding up the computation. Experiments show that the proposed method is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2017

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2016.2617829